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im Breisgau, Federal Republic of Germany 
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Abstract A siochastic representation of the mbuleni dynamics of the two-dimensional Navier- 
Stokes equation is developed. This stochastic formulation interprets the fluctuating velocity field 
as a discrete, multivariate stochastic process which is govemed by a master equation. By deriving 
the Hopf functional equation of statistical Ruid mechanics it is shown that this approach yields 
a complete description of the stochastic properties of the mbuleni velocity field. On the basis 
of the multivariate master equation a stochastic simulation method for the two-dimensional 
NavierStokes equation is consmcted. This method is applied to the stochastic simulation of 
high-Reynolds-number turbulent flows. 

1. Introduction 

One of the challenging problems in computational fluid dynamics is the simulation of 
fully developed Navier-Stokes turbulence. As far as theories of turbulence are concerned 
[ 1-41 numerical investigations may serve as important testing grounds and, furthermore, 
as a starting point for the development of new ideas. On the other hand, simulations 
of strongly turbulent fluid flows are interesting on their own since such flows represent 
excellent examples for systems with many, strongly interacting, degrees of freedom. 

Recently a new approach to fluid dynamics has been proposed I5-81. In this approach 
the velocity field is regarded as a discrete stochastic process [9,10] which is governed by a 
multivariate master equation. The latter leads to a simple stochastic simulation algorithm by 
which an ensemble of realizations of the multivariate stochastic process is generated. Any 
physical quantity can then obtained by evaluating the corresponding ensemble average. This 
stochastic approach has been illustrated by means of various (1 + 1)-dimensional examples 
from fluid dynamics [6]. In particular, the stability of the stochastic simulation method has 
been demonstrated by simulating shock-wave and soliton-like solutions of Burgers' equation 
[5]. Moreover, we have investigated the Burgers' model of turbulence. Employing the Hopf 
functional equation [ll-141 it has been shown [8] that the multivariate master equation 
leads to a complete description of the stochastic properties of the turbulence. This fact 
was illustrated by performing some stochastic simulations of the Burgers' turbulence model 
which yield, for example, the correct behaviour for the energy dissipation rate and the 
energy spectrum. 

It is the purpose of the present paper to generalize these concepts to two space 
dimensions. That is, we are going to construct a unified stochastic formulation of the 
dynamics of the two-dimensional incompressible Navier-Stokes equation by means of a 
multivariate master equation. The latter governs the dynamics of a discrete stochastic 
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process which corresponds to the fluctuating velocity field of the turbulence. Furthermore, 
we derive from the master equation the Hopf functional equation for the characteristic 
functional of statistical hydrodynamics. Thus, our stochastic formulation offers a new 
approach to the Hopf characteristic functional by stochastic simulation methods. 

The master equation formulation developed in this paper should be distinguished from 
other discrete approaches to computational fluid dynamics as, for example, lattice-gas 
cellular automata [15] or the lattice B o l t "  equation [16]. Within these approaches 
the dynamics of the fluid is described on a more microscopic level by means of a simplified 
version of the microscopic interactions. In contrast. ow stochastic representation may be 
regarded as a mesoscopic approach which describes the fluid on the level of the theory of 
fluctuating hydrodynamics. This latter point is discussed in [17]. 

The paper is organized as follows. Having presented in section 2 the basic equations 
and OUT treatment of the incompressibility condition, we formulate in section 3 the general 
theoretical framework of OUT stochastic interpretation of fluid dynamics. We construct 
the discrete phase space of the fluid and postulate a discrete multivariate master equation 
which defines the probabilistic time evolution of the random velocity variables. The master 
equation is defined within a formalism which draws some analogies to the occupation 
number formalism of the second quantization in many-body quantum mechanics. This fact 
is employed in order to derive the general form for the time evolution equation of the 
expectation value of an arbitrary function of the stochastic variables. 

In section 4 the characteristic functional pertaining to OUT multivariate stochastic process 
is constructed and shown to obey the Hopf functional equation of statistical hydrodynamics. 
This means that the master equation defined in section 3 provides a complete description 
of the whole hierarchy of the n-point correlation functions of the turbulent field. 

Section 5 is devoted to the stochastic simulation method. We derive a stochastic 
simulation algorithm from our master equation. On the basis of the theoretical investigations 
of section 4, this algorithm allows us to generate an ensemble of realizations of the turbulent 
velocity field and to estimate statistical quantities by ensemble averages. The stochastic 
simulation method is exemplified by performing some simulations of two-dimensional 
homogeneous turbulence. In particular, the behaviour of the enstrophy dissipation rate 
and the energy spectnun are discussed. 

Finally, in section 6 we summarize the contents of the paper and draw our conclusions. 
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2. Basic equations and treatment of the constraint 

Let us first briefly define the hasic dynamic equations from which we start our analysis. 
Throughout this paper we work within the so-called stream function formulation of the 
two-dimensional Navier-Stokes equation [18]. Introducing the stream function @(I, t )  and 
the vorticity field w ( z .  t )  on the two-dimensional plane with coordinates I ( x ,  y), the 
Navier-Stokes equation for an incompressible fluid may be written 

The x and y components of the velocity field o (U, U) are given by 

U = a@r/ay v = -a*/ax 
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and the connection between the vorticity field w = &U - a,u and the stream function @ 
appears as the constraint 

A@ + w  = 0. (3) 

To be specific, we restrict ourselves in this paper to the most simple boundary conditions. 
We are seeking for solutions (U, @) in the space S of smooth functions which are periodic 
on the square Q = [0, L] x [O, L] and have zero average 

dxdyw=O /dxdy$ = O .  s (4 )  

Note that the first equation in (4) is compatible with the Navieratokes equation since it 
follows from (I)  that the total vorticity is conserved and is, therefore, zero for all times if 
it is zero initially. Furthermore, the second equation in (4) guarantees that the constraint 
equation (3) can be solved uniquely for @. This follows from the fact that the Laplacian A 
is invertible in the space S of functions defined by the above conditions. 

Of course, working in position space the constraint (3) leads to a non-local integral 
equation for $. Accordingly, the master equation to be constructed below will then 
contain non-local transitions. However, this difficulty can be circumvented by the following 
technique. Instead of using the constraint (3), @ is regarded as an independent dynamical 
variable which obeys the following evolution equation 

E > O  g = l - E V .  (5) 

Note first, that equation (1) together with equation (5) represent a consistent set of dynamic 
equations in the space S. Now, consider E to be a small quantity, i.e. consider the limit 
E -+ 0. This l i t  can be studied by means of the general method of elimination of fast 
variables [19]. This method tells us that for small E the stream function @ becomes a fast 
variable whereas the vorticity w is a slow variable. Furthermore, as is demonstrated by the 
general method, to leading order the fast variable @ becomes a function of the slow variable 
w. This means that the dynamics is confined to a manifold in the function space S which 
is paramehized by the slow variable and which is obtained by setting the expression within 
the brackets on the right-hand side in (5) equal to zero and by putting E = 0 (i.e. g = 1). 
Thus, this constraint manifold is precisely that one given by our original constraint (3). 

A necessary condition for the applicability of the method of elimination of fast variables 
is the following one: for fixed values of the slow variables, each point of the constraint 
manifold must be an attractor of the dynamic equation for the fast variable [19]. In our 
case, this condition is obviously fulfilled since the Laplacian A restricted to the space S is 
a negative operator, i.e. has only strictly negative eigenvalues. In an appendix we derive 
a condition for E which guarantees that (UJ, @) is confined to the neighbourhood of the 
constraint manifold. 

It might be important to note that the three-dimensional NavierStokes equation for an 
incompressible fluid may likewise be obtained from the general equation for a compressible 
fluid by the method of elimination of fast variables. In this case, the small quantity is 
the compressibility of the fluid (or the inverse of the velocity of sound) and the constraint 
manifold is given by divv = 0 [19]. 
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3. "lie master equation formulation of statistical Hydrodynamics 

We now turn to the construction of a stochastic representation of the two-dimensional 
NavierStokes equation. This will be done within the stream function formalism and starting 
from the dynamical system defined by equations (I) and (5). The basic idea of our stochastic 
formulation is to interpret the fields @ and w appearing in these partial differential equations 
as certain multivariate, discrete stochastic processes. 

In order to define the latter we first specify the discrete phase space, that is the set of 
stabs of the fluid. To this end, we partition the position space, i.e. the square Q, into small 
square cells (of area 81') labelled by two integers (A. p). Thus, we write 

U-P Breuer and F Petruccione 

XA+ (XAps YAp) = (A ' 61, ' 61) (6) 

and 61 = L / ( M  + 1) denotes a mesoscopic length scale. Moreover, the values of the 
stream function and the vorticity are discretized by defining mesoscopic scales 6@ and 60. 
This means that and Sw respectively. In 
other words, the fields @ and o are represented, on a mesoscopic level, by two (M + 
dimensional arrays of integers: 

and w are measured in integer multiples of 

No := Np := IN?}. (8) 

For convenience we choose 

6* = 8126w. (9) 

This choice is motivated by the constraint (3) which provides the connection between the 
stream function and the vorticity field. Fourier-transforming the constraint (3) we obtain in 
an obvious notation 

2 k @k =or;. 

Due to our discretization of position space into cells of size 812, the maximal wavenumber 
Ikl is of order 1/61' and, therefore, the corresponding Fourier modes of * are by a factor 
of 61' smaller than the Fourier modes of w. Since according to (9) S+ is smaller than 6w 
by the same factor, it is guaranteed that these high wavenumber components axe resolved 
within the discretization of the values of the stream function. 

The discrete phase space r of the fluid which replaces the function space S introduced 
in section 2 may now be written as 

r = ( (N , ,  I N;+ E z, N? E z} (10) 

where 25 denotes the set of integers. 
Now, the stochastic dynamics comes in by regarding NC+ and N f  as time-dependent 

random numbers, i.e. we consider (Nw, Np) as a 2 ( M  + 1)bariate stochastic process. 
Correspondingly, we introduce the joint probability distribution 

P = P(N,, N*; t) (11) 
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giving the probability of finding at time t the two sets of numbers Nu and N $ .  Of course, 
P is assumed to be normalized. 

where CNaN denotes a 2(M+I)'-fold sum over all integers N?, N p .  With the help of the 
joint probabihy distribution P expectation values of arbitrary functions 3 = 3(N,,  N e )  
of the stochastic variables can be calculated according to 

We now postulate that the stochastic process (Nu, N J . )  is Markovian. This postulate is 
motivated by the fact that the stochastic process defined by the statistical formulation of 
hydrodynamics is also Markovian [SI. Under these conditions the stochastic process is 
completely defined by a master equation for the joint probability distribution P ,  once an 
initial distribution has been given. This master equation may be written in the compact 
form 

a p / a t  = A P .  (14) 

Here, the time evolution operator A represents a linear operator which acts (to the right) 
on functions of the stochastic variables. Adopting tbis general form for the master equation 
we now define an appropriate operator A. 

As has been mentioned at the beginning of this section the basic idea on which our 
stochastic interpretation is based is the following one: the fields w and @ appearing in the 
Navier-Stokes and the constraint equation are replaced by the multivariate stochastic process 
( N w ,  N $ ) .  To make this idea more precise, recall that within the usual statistical description 
of the turbulence problem the vorticity field and the stream function are considered as 
fluctuating fields. Following the Reynolds averaging procedure one obtains an infinite set 
of coupled equations for the set of nth-order moments of these fields. For example, the 
equations for the first moments of the stream function and the vorticity field take the form 

a 
- (o )=vA(o)+  
at 
a 1 -(e) = (A($) + g ( d ) .  a t  

Within our discrete formulation the random fields w and @ are replaced by the random 
quantities defined by 

:= 60Nk' @.ip := 6 @ N p .  (16) 

Now, our aim is to define a time evolution operator A and, thereby, a master equation 
in such a way that the time evolution of the moments of the stochastic processes (16) 
is governed by a discretized form of the coupled system of dynamic moment equations 
which completely characterizes the statistical properties of the turbulence. In particular, we 
demand that the first moments obey the following discretized version of the equations (15): 

a 
at 

at 

-(@A&) = V D ( ~ A J L )  + (dl($A' &%&) - & ( @ I ,  d l w d )  

a 1 (17) 
-(@A') = ;(D($A&) +g(wA&)). 
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For the sake of a compact notation we have introduced here the discrete operators dl, d2 
and D which replace the partial differential operators a p x ,  a/ay and the Laplacian A and 
which are defined by 
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where fAe denotes an arbitrary function on the discrete grid introduced above. 

can be decomposed into three parts, 
An appropriate time evolution operator A which fulfils the requirement just explained 

A = Ad +A, + A p .  (1% 

Each of these three operators corresponds to a certain part of the right-hand sides of 
differential equations (1) and (5). The structure of these operators is conveniently described 
with the help of the following shift operators which act on functions F(N,, NJ.)  of the 
stochastic variables: 

HE?-(. . . , N i p , .  . .) := F(. . . , NlW & 1 , .  . .) 
F$F( ..., N F ,  .. .) := F( ... , NF f 1,. , .). 

Thus, these operators change the random integers by k1 and therefore induce the most 
simple transitions of the state of the fluid. Employing these shift operators the operator 
which describes the viscous diffusion term of the vorticity equation (1) may be written in 
the form 

where 1 denotes the identity operator. The nonlinear convection term of the vorticity 
equation is represented by the operator 

whereas the constraint equation is modelled by the operator 
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Writing these expressions we have furthermore introduced the quantities 

Moreover, we define the positive part *3 and negative part -3 of a function 3 of the 
stochastic variables by the relations: 

3= +3+ -3 131 = +F- -3. (25) 

The multivariate master equation (14) together with (19) and these definitions completely 
defines our stochastic process (No. N*) and constitutes the starting point of the theoretical 
and numerical investigations in this paper. Note that the master equation specifies all 
possible transitions among the states of the phase space r and gives the corresponding 
transition rates. These transitions are described in terms of the shift operators. For 
example, raises the stochastic variable NbJ’ by 1 and H$ lowers this variable by 
1. Correspondingly, the term H&,”HA,,, for example, describes the jump of a ‘quantum’ 
So of vorticity from cell (A, p )  to cell (A+ 1, fi). All transitions which appear in our master 
equation are written in terms of such oneparticle jumps. 

The structure of the time evolution operators given above might look rather complicated. 
The reader who is unfamiliar with the operator notation used here, may consult [6] which 
contains a more detailed exposition of the above notation. Moreover, we describe in 
section 5 how a typical realization of the multivariate stochastic process can be obtained. 
This might be helpful as well in order to understand the meaning of the master equation. 

Rather than giving a heuristic construction of our master equation (this has been done 
for the one-dimensional Burgers’ equation in previous work 161) we will demonstrate in 
the next section that this master equation fulfils our requirement stated above, i.e. that it 
correctly describes the whole hierarchy of the moment equations which are characteristic 
for the turbulence problem. To this end. we derive in the following some general properties 
of our master equation which serve as a starting point of the considerations in the next 
section. 

It should be clear that our formulation of the master equation resembles the occupation 
number formalism of many-body quantum mechanics. This analogy is also reflected in the 
general structure of the time evolution equation of an arbitrary function F(N,, NJ. )  of the 
stochastic variables. That is, regarding 3 as a multiplicative operator we now show that 
the time derivative of the expectation value of 3 is given by the expectation value of the 
commutator, 

(26) 
a 
a t  
-V) = V, AI). 

In order to prove this equation we first observe that, for example, 

((H&”*,HA” - 1)3) = 0 (27) 

as is easily seen by taking into account that the expectation value involves a multiple sum 
over all stochastic variables and by shifting the summation indices appropriately. Analogous 
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equations are valid for any other product of shift operators appearing in our master equation. 
Thus, we immediately conclude from the stucture of our master equation that the following 
equation holds 

H-P Breuer and F Petruccione 

(dF) = 0. (28) 

This property of the time evolution operator guarantees that (14) is, in fact, a master equation. 
Employing the definition of the expectation value (13) and the master equation (14) and 
invoking (28) we find 

Equation (26) offers a convenient way of determining the time evolution equations of 
arbitrary moments of the stochastic variables. This is the subject of the next section. 

4. Derivation of the Hopf functional equation 

It should be clear that the multivariate master equation (14) is nonlinear. This is due 
to the fact that the transition rates corresponding to the convection operator depend 
nonlinearly upon the stochastic variables (see equations (22) and (24)). Thus, the moment 
equations which follow from our master equation are not closed and form an infinite system 
of coupled equations. We will demonstrate in this section that this system of moment 
equations is precisely that one which is known from the general theory of turbulence. 

In order to derive the dynamic moment equations corresponding to our master equation 
one may, of course, start from equation (26) using the various moments for the function 3. 
However, it is much more convenient to work with the multivariate characteristic function 

where the stochastic function G is defined by 

In the following we will derive the equation of motion for this characteristic function 
M ( a ,  f l ,  I ) .  From this time evolution equation the moment equations can then be obtained 
simply by differentiating with respect to al.,, and Thus, the characteristic function 
contains all dynamic properties of the n-point (equal-time) correlation functions. 

To start with, we invoke equation (26) to obtain 
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The commutators appearing in the above equation can be evaluated by means of the 
following commutation relations which are easily verified by applying the operators on 
both sides to an arbitrary function of the stochastic variables: 

Using these relations we find 

- ((exp(-i8P8*&) - 1). 

Employing these equations together with the time evolution equation for the multivariate 
characteristic function M, equation (32), one obtains the time evolution equations for 
arbitrary moments of the stochastic variables (Nu, ?I*). For example, differentiating both 
sides of (32) with respect to (YA, and using the identity 

yields the dynamic equations for the moments of the random vorticity. In particular, for 

one finds equations (17). 
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Of course, one could go on deriving the corresponding equations for the higher moments. 
However, we are interested in a comparison of these moment equations with the moment 
hierarchy which is known from the general statistical theory of turbulence and which 
involves partial differential equations for the moments of continuous fields. It is therefore 
more convenient to adopt the following strategy. 

First, note that the time evolution equation (32) for the characteristic function M depends 
upon the mesoscopic scales So and 61 (note that SI) is fixed by (9)) which have been used 
in order to discretize the phase space. In order to see the meaning of the vorticity scale So 
note that in accordance with equation (16) the random integers NAP scale with So-', that 
is for a fixed value of onp these integers become arbitrary large if the l i t  of continuous 
vorticity is taken, i.e. if we let 60 -+ 0. Thus, we expect that the random fields o h p  

and @A,, are independent of the vorticity scale So to leading order in the continuum Limit. 
Therefore, we first perform an expansion with respect to So. Then, in a second step, the 
limit of continuous space is investigated, that is, we let 81 -+ 0. It will turn out that the 
resulting continuous form of the time evolution equation for M is identical to the Hopf 
functional equation which serves as a complete description of the statistical properties of 
the turbulence. 

It is important to note that this procedure amounts to an asymptotic expansion of the 
equation of motion for M which is justified by the fact that the dominant contribution of 
this expansion, i.e. the Hopf functional equation, does not depend upon So and 61 (see 
below). This fact is achieved by an appropriate scaling of the stochastic variables in the 
stochastic function G (see equation (31)). The same technique has been used in the context 
of asymptotic expansions of reaction-diffusion systems [ZO]. 

To begin with, we now perform two steps. First, the exponentids occuning in (34) 
are expanded in powers of SL26o and Si2&) respectively, including terms of second order. 
Second, we invoke the fact that the stochastic variables within the angular brackets can be 
expressed by partial derivatives which act on the characteristic function M = (G), i.e. we 
replace 

We then obtain, including terms of order SJ'Sw and neglecting terms of order So6i3, 

Now, in the continuum limit 61 -+ 0 of the time evolution equation (32) the 
multivariate characteristic function M ( a ,  p, r) becomes a (time-dependent) functional 
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M[u, p ,  t ]  in the space of functions @(I) and p(z) whereas partial derivatives turn into 
functional derivatives, 

and sums over ( A ,  p )  have to be replaced by integrals, 

-+ /dxdy. 
AS 

It is then easy to infer from (38) the continuous version of equation (32). By an additional 
integration by parts we finally anive at 

a a s a s  
-M[or(z),,4(z),t]=i at 

(41) 

This is the equation of motion for the characteristic functional M[or, p ,  t ]  which has been 
derived from our master equation for the multivariate stochastic process (No, N?)  by an 
asymptotic expansion around the continuum limit of the latter. As is easily seen, the first 
two lines of equation (41) are identical to the well-known Hopf functional equation [ I  1-14] 
corresponding to a statistical ensemble which evolves according to the equations of motion 
(1) and (5). 

Recall that the Hopf functional equation yields a complete formulation of the statistical 
problem of the turbulence. Once an appropriate solution is known, arbitrary correlation 
functions of the vorticity and stream function can be obtained from functional derivatives of 
the characteristic functional M. For example, we have for the two-point vorticity correlation 

*Z I 

The third line in equation (41) represents a functional 

which vanishes in the continuum limit 60 --+ 0. Thus we conclude that within this 
continuum limit the stochastic process defined by the multivariate master equation yields 
a complete representation of the system of equations of motion for the n-point correlation 
functions of the turbulence problem. 

In order to see the meaning of the additional term (43) in our Hopf equation (41) we 
now derive the equation for the two-point vorticity correlation (42). The latter is obtained 
by functionally differentiating the Hopf equation (41) twice and by using equation (42). On 
Fourier transforming the resulting equation and assuming spatial homogeneity we then find 
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where the Fourier transform of a function f (z) is defined by 

f k  := 1 d~ dy f (2) exp(-ikz) 

and w k  denotes the vorticity transfer function defined by 

(45) 

(46) 
1 

w k  := 3 c ( k y q z  - k x q y ) ( 4 % % - q )  f CC 
P 

(cc means that the complex conjugated term is to be added) and, finally, 

U2 := (3SwSPLZ (3 := (lol). (47) 

As is to be expected from our general discussion, equation (44) represents the well-known 
equation of motion for the vorticity correlation function if the continuum limit is taken and, 
thus, the last term vanishes. This last term in equation (44) is the Fourier transform of 

This term represents the correlation function of a random vorticity stress and its presence 
in equation (44) is to be traced to the discrete nature of the stochastic variables ( N u ,  NJ. ) .  
In order to see the effect of this random vorticity stress we consider the stationary solution 
of equation (44) which is given by 

(49) 

Thus we see that in the stationary state the random vorticity stress (48) gives rise to an 
equipartition of vorticity among the Fourier modes. It might be interesting to note that the 
stationary state given by equation (49) may be identified with the equilibrium state of a 
canonical ensemble which is based on the enstrophy as a constant of motion. Introducing 
the corresponding enstrophy temperature T [3,4] we find 

$1580= f k e T  (50) 

where f = (L/Sl)* denotes the number of degrees of freedom and kg the Boltzmann 
constant. Thus, the quantity So which has been introduced in order to discretize the 
vorticity is proportional to the enstrophy temperature T and the number of degrees of 
freedom. Therefore, the continuum limit Sw -+ 0 may be interpreted as the limit of zero 
enstrophy temperature. 

It is important to note the expansion reading to the Hopf functional equation provides 
an explicit expression for the random vorticity stress which appears as the last term in 
equation (44) for the two-point correlation function. We now demonstrate that the vorticity 
field w may be decomposed into two parts, 

2 
(@Jk)rIat = Q , 

O k  = Gk + 7lk (51) 

in such a way that the first part which is denoted by 2 obeys the equation 
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where w k  is defined as in equation (46) with ok replaced by hk. Thus, in accordance with 
OUT above discussion ai represents the vorticity field at zero enstrophy temperature. The 
second part uk  in equation (51) denotes a random field which is statistically independent 
from the vorticity and which obeys 

Consequently, we have 

Inserting equation (54) into equation (44) and choosing the correlation function of the 
random field ?& to be 

I 

g&) = 2ukz [ dr  cr2(s)exp(-2uk2(t - T)] (55) 
J O  

now yields equation (52). Thus we conclude that the noise part in equation (44) induced 
by the random vorticity stress is removed by the simple transformation (54) which may 
therefore be used in order to separate uniquely the zero temperature field from the random 
vorticity govemed by our master equation. 

Once again we emphasize that the random vorticity stress is known explicitly from the 
expansion leading to the Hopf equation. Therefore, having performed a stochastic simulation 
of our master equation (see the next section) this random stress can be determined from 
the simulation data by means of equation (48). Employing this information it is possible 
to obtain the zero temperature field 3 from the simulation data by means of the above 
transformation; in particular, the zero temperature two-point correlation function may be 
obtained from equation (54). This fact will be used in the next section when performing 
some stochastic simulations of the two-dimensional turbulence. 

5. Stochastic simulations of two-dimensional turbulence 

Having presented the theoretical framework of our stochastic formulation of fluid dynamics 
we shall now explain how to derive stochastic simulation schemes from our master equation. 
To begin with, we recall that the master equation contains all information about the possible 
transitions among the discrete states of the phase space r together with the corresponding 
transition rates. Since the general method of stochastic simu!atiom has already been 
explained in a previous paper 181 we only present here the basic elements of this method. 

The basic idea of the stochastic simulation method is to generate, by drawing random 
numbers, realizations of the stochastic process defined by the master equation. Such a 
realization will be denoted by (Ne@), N$( t ) ) .  Once an ensemble of realizations has been 
generated the quantity of interest can be obtained by evaluating the corresponding ensemble 
average. 

In order to obtain a realization one repeats the following two steps until the desired 
final time is reached. 

(1) Determination of the stochastic time step. Assuming that at a certain time to the 
state of the fluid is given by (N,(tO). Nq( t0 ) )  a stochastic time step is to be determined 
from the total transition rate rt,,d, i.e. from the probability per unit time that a transition 
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occurs somewhere in the system. This quantity can be inferred from the master equation as 
the sum of all loss terms, 
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where 

The stochastic time step T can then be obtained by drawing a random number q which is 
uniformly distributed over the interval [0, 11 and with the help of the formula 

Note that this equation means that t is distributed exponentially and has mean value 

In order to determine the new state 
(N& 4- T), N*(b t 5 ) )  of the fluid one first chooses a certain cell (A, p )  at random 
with probability rAp/rIaw. Now, the actual transition is to be selected from 10 different 
possibilities. Each of these possibilities corresponds to one of the 10 terms in our master 
equation (four transitions correspond to the viscosity term A, four to the convection term 
A, and two to the constraint operator dp). The correct relative transition probability is 
obtained by dividing the term that multiplies the shift operators by FAp. Note that in each 
transition exactly two of the stochastic integers change by the amount k l .  

Let us now illustrate the stochastic simulation method by performing some simulations 
for two-dimensional turbulence. The physical sibation under study and the boundary 
conditions are precisely those explained in section 2 with L = 1. The initial conditions are 
defined as follows. The initial vorticity field is given by 

(z) = i/rId. 
(2 )  Deferminaion of the a c m l  transition. 

O(Z,o)  = C(BkCOSkZ+Ckshk%) (59) 
k 

and the initial stream function is given by the constraint equation. The amplitudes Bk and 
Ck represent independent random Gaussian numbers with zero mean and variances 

These initial conditions guarantee that the initial fields are homogeneous and isotropic. 
Furthermore, we have as integral quantities the kinetic energy E and the enstrophy SZ, 

and the palinstrophy P (enstrophy dissipation rate) which is defined by 

_ = _  as-2 2vP .  
at 
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The initial condition may be characterized by the Reynolds numbers 121,221 

7577 

It should be noted that the initial conditions as well as the Reynolds numbers and the 
resolution used in our stochastic simulations are similar to those used by Herring et al [21]. 

According to section 3 the inital conditions for the stochastic variables are given by 

where int(.) denotes the integer part. Within our discrete stochastic formulation the various 
quantities of interest are determined by taking appropriate ensemble averages. For example, 
the enstrophy is determined by the formula 

.IP 

and the vorticity spectnun (wiwk) is obtained by Fourier transforming the two-point 
correlation function which is defined to be 

First we show in figures 1 and 2 one realization of the stochastic process defined by OUT 
master equation as it is obtained from a stochastic simulation with parameters Sw = and 
81 = 128-'. The initial condition has been drawn from the initial ensemble defined above 
with ko = 4n and corresponds to the Reynolds numbers R'(0) = 583 and &(O) = 31.7. 
We depict the stream function contours (figure 1) and the isovorticity lines (figure 2) at 
time t = 3 which corresponds to approximately 3 turnover times of the large eddies. As 
one can see from the isovorticity lines in figure 2 the stochastic process w~~ exhibits the 
basic features of evolving two-dimensional turbulence at early times, i.e. the formation of 
quasi-rectilinear vorticity gradient sheets [23]. It should be noted that the isovorticity lines 
displayed in figure 2 are rather choppy since the noise level in our simulation is relatively 
high and figure 2 shows only one realization of the underlying stochastic process. 

In figures 3 and 4 we display the results which have been obtained by averaging over 
three realizations. The initial configurations have been drawn from the initial ensemble 
defined above with and 81 = 128-l and 
the mean values of the initial Reynolds numbers are RL(O) = 705 and RA(O) = 35.2. 
Furthermore. we have the following initial values for energy, enstrophy and palinswphy: 

= 4n. The parameters are again So = 

E(0)  = 0.5042 x Q(0) = 0.4937 P(0)  = 1477. (67) 

Figure 3 shows the palinstrophy (enstrophy dissipation rate) P as a function of time and, 
finally, we depict in figure 4 the energy spectrum 

obtained by averaging over the three realizations and over the three times t = 8, t = 9 and 
t = 10. As has been explained in section 3 the noise level induced by the random vorticity 
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0.0 I .o 

Figure 1. One realization of the stochastic process = 6*N$ defined by the master 
equation (14). The initial condition has been drawn from the initial ensemble defined by 
qoations (59) and (€0). The figure shows the stream fnncllon contours nl time t = 3. 
Parameters: 6ar = 61 = 128-I. ko = 4 ~ .  Reynolds numbers: RL(O) = 583, 
Ri(0)  = 31.7. 

stress (48) has been subtracted in both figures in order to obtain the zero temperature 
quantities (see equation (54)) (actually, we have determined, from the expansion leading to 
the Hopf equation, the expression for the random vorticity stress to one order higher in 61 
than was done in section 4). 

As is indicated in figure 4 the energy spectrum exhibits a power-law behaviour in the 
inertial range with a spectral exponent of approximately -3.5. This  result is consistent 
with the results obtained by Brachet et a[ [U] which demonstrate that around the time of 
maximum enstrophy dissipation (see figure 3) the spectral exponent of the energy spectrum 
exhibits a transition from -4 to -3. A more detailed investigation of the behaviour of the 
energy spectrum and, in particular, of the existence of a vorticity cascade [24,25] leading 
to a spectral exponent of -3 will be given elsewhere. 

6. Conclusions 

As is well known, Monte Carlo methods provide very efficient tools for the investigation 
of many-body systems in thermal equilibrium 1261. Within these methods one defines a 
probabilistic dynamic in such a way that the probability dishibution relaxes in the long time 
limit to the equilibrium distribution which is known from statistical mechanics. However, 
since this probabilistic dynamic is, in general, very different from the true physical time 
evolution, the usual Monte Carlo methods are not appropriate for the study of the dynamical 
behaviour of systems far from equilibrium. It is this fact which has been the motivation of 
OUT stochastic formulation of fluid dynamics. In fact, the master equation representation of 
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0.0 1 .o 

Figure 2. One realization of the stochastic process qW = 6$Ni* defined by the m e r  
equation (14). The initial condition has been drawn from the initial ensemble defined by 
equations (59) and (60). The figure shows the vorticity contours at timet = 3. The parameters 
are the same as in figure 1. 

l oo0  t 
0- 
0 5 10 15 

t 

Figure 3. The palinstrophy P (mstmphy dissipation rate) as a function of time as it is obtained 
by averaging over three realization of the stochastic process defined by the master equation (14) 
and the inital enremble defined by equations (59) and (60). The parameters are the same as in 
figure I and the mean values of lhe Reynolds numbers are: RL(O) = 705, Ri(O)  = 35.2. 

the two-dimensional turbulence presented in this paper may be regarded as an example for 
the application of stochastic simulation methods to non-equilibrium systems. 

Let us briefly summarize what has been achieved in this paper. The stochastic 
formulation of the two-dimensional NavierStokes equation is based on the multivariate 
master equation (14) which governs the probabilistic dynamics of a discrete stochastic 
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Figure 4. The energy spct"  Eh defined in equation (66) as it is obtlned from a simulation 
of the stochastic process defined by the master equation (14) and the inital ensemble defined 
by equations (59) and (60) by averaging over fhree reali.mtions and over the tluee times t = 8, 
L = 9, and r = IO. The parameters an the same as in figure 1 and the mean values of the 
Reynolds numbers m: Rr(0) = 705, Ri(0) = 353. 

process (Nm, Nq) representing the random vorticity and stream function. The applicability 
of our approach to the problem of two-dimensional turbulence follows from the equation of 
motion for the characteristic functional which has been derived from our master equation 
in section 4. It has been shown that this equation of motion leads to the Hopf functional 
equation of turbulence in the continuum limit and, thus, the whole hierarchy of turbulent 
correlation functions is contained in the stochastic process defined by the master equation. 
In other words, the master equation formulation presented in this paper leads to a stochastic 
simulation technique for the generating functional of the turbulent velocity field. 

In order to understand more clearly the results of section 4, we draw again the analogy 
with Monte Carlo methods in equilibrium statistical mechanics. Any master equation 
which has been designed in order to evaluate, for example, the partition function of the 
system under study has to fulfil one basic property: it must be guaranteed that the relevant 
probability dis!xibution which is known from equilibrium statistical mechanics represents 
a unique stationary solution of the master equation and that the initial states converge, in 
the limit of long times, to precisely this stationary solution. In comparison, the results 
of section 4 demonstrate that in the continuum limit the stochastic process defined by our 
master equation obeys the correct equations of motion which are conveniently expressed by 
the Hopf equation for the characteristic functional. It must be emphasized that, in contrast 
to the usual Monte Carlo methods, our approach is based on a representation of the full 
time evolution and does not require any information about the probability distribution of 
the turbulent fields. 

On the basis of these theoretical results we have derived in section 5 a stochastic 
simulation algorithm which allows us to generate realizations of the stochastic process 
defined by the master equation. From a number of such realizations the interesting quantities 
are then obtained by evaluating the corresponding ensemble averages. This algorithm has 
been illustrated by performing some stochastic simulations of two-dimensional homogeneous 
turbulence. It has been demonstrated that the results provide a good description of the basic 
features of two-dimensional turbulence. 

It should be evident that the stochastic approach presented in this paper may be 
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generalized to three space dimensions. Furthermore, one may include other equations of 
non-equilibrium thermodynamics such as the continuity equation for the mass and the 
balance equation for the internal energy. As we have already indicated, our stochastic 
formulation resembles closely the occupation number formalism which is used, for example, 
in the mesoscopic description of chemical reactions. It is therefore possible to extend our 
stochastic approach in a natural way to include the effect of chemical reactions and to study 
the dynamics of reacting flows. 

Appendix 

This appendix is devoted to a more detailed analysis of the system of equations given by 
(1) and (5) by means of the method of elimination of fast variables. In particular, we shall 
derive an equation which makes possible to estimate the deviation of the fast variable @ 
from the constraint manifold given by A@ + OJ = 0. 

According to the general method the fast variable @ is expanded in powers of E,  

@ = @o + E @ I  -k E2@2 f... . (AI) 

Inserting this expansion into equation (5) we obtain to leading order E - ' :  

A@o -I- OJ = 0. (-42) 

This equation tells us that to leading order the fast variable @ follows the slow variable 
OJ and that the constraint manifold is given by condition (3). The higher orders are easily 
found to yield: 

A@, = $0 + VOJ (A31 

and 

A!hnn+1 = @" n = 1,2,3,  .. . . 644) 

By means of these equations $rn+l is determined recursively from @". In particular, we find 

Until now we have assumed that, in some sense, E may be regarded as small. In order to 
formulate this assumption more precisely we now require 

IISA@III << IlA$oIl = l l ~ l l  646) 

where 11 . 11 denotes some appropriate n o m  in the function space S. To be specific, we use 
in the following the Lz norm in the space of squae integrable function on Q. In other 
words, we require that the first-order correction  EA@^ is small compared with the leading 
order term AJlo. It is easily seen that this requirement is equivalent to 
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A rough estimate is obtained by observing that we have in Fourier space 

H-P Breuer and F Petruccione 

A-’ = -l/k2 0- lkllvl (A8) 

and that the nonlinearity of the vorticity equation may be approximated by 

where the symbol - indicates that two quantities are of the same order of magnitude. Thus, 
we obtain from (A6) 

E << IWIvl. ( A W  

The right-hand side may be estimated by taking for the wavenumber Ikl its minimum value 
2zJL and for IvI the RMS velocity V := (v2)l/*.  This finally yields 

&<<2R/V.L.  (All)  

This condition must he fulfilled in order to confine the fast variable @ to the vicinity of the 
constraint manifold. For the stochastic simulations presented in section 5 condition (AI 1) 
gives E < 190. In all simulations presented in this paper we have used E = 10 which was 
found to yields a relative error of 

IIW + ~ I I / I I ~ I I  < 5 x (A13 
for all times. 
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